Molecular Cloning, Expression and Purification of Truncated hpd Fragment of Haemophilus influenzae in Escherichia coli
نویسندگان
چکیده
BACKGROUND Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in children, causing otitis media, sinusitis, conjunctivitis, pneumonia, and occasionally invasive infections. Protein D (PD) belongs to the minor outer-membrane proteins of H. influenza. Moreover, it has been shown that this protein is one of the most potent vaccine candidates against the NTHi strain. OBJECTIVES In the present study, a new truncated form of PD was designed based on conserved areas, and recombinant truncated PD was expressed. MATERIALS AND METHODS Truncated PD was designed using bioinformatics tools, and a 345 bp fragment of the truncated hpd gene was amplified by polymerase chain reaction (PCR) from H. influenzae and subsequently cloned into the prokaryotic expression vector pBAD-gIIIA. In addition, for the expression of the recombinant protein, the pBAD-truncated PD plasmid was transformed into competent TOP10 cells. The recombinant protein was expressed with Arabinose. The expressed protein was purified by affinity chromatography using Ni-NTA resin. RESULTS The cloning of PD was confirmed by colony-PCR and enzymatic digestion. Arabinose 0.2% was able to efficiently induce protein expression. The SDS-PAGE analysis showed that our constructed pBAD-PD-TOP10 efficiently produced a target recombinant protein with a molecular weight of 16 kDa. A high concentration of the recombinant protein was obtained via the purification process by affinity chromatography. The recombinant PD was reacted with peroxidase-conjugated rabbit anti-mouse immunoglobulins. CONCLUSIONS Our results showed that the recombinant protein produced by the pBAD vector in the Escherichia coli system was very efficient.
منابع مشابه
In silico Design of Truncated Omp31 Protein of Brucella melitensis: Its Cloning and High Level Expression in Escherichia coli
Introduction: Omp31 is animmunodominant and protective antigen conserved in Brucella species and a good candidate for vaccine design. Material & methods: The present study aimed at in silico design of the truncated Omp31 (TOmp31) using bioinformatic tools and to express the selected form in Escherichia coli (E. coli) Results and conclusion: Various bioinformatically calculated scores for the ...
متن کاملCloning and expression of fragment of the rabies virus nucleoprotein gene in Escherichia coli and evaluation of antigenicity of the expression product
Rabies virus nucleoprotein (N protein) encapsidates genomic RNA of the virus and forms the viral ribonucleoprotein complex. These N proteins represent highly organized structures which activate proliferation of B cells and production antibodies against the N protein. In addition to the B cell, the rabies virus N protein has been shown to induce potent T helper cell responses resulting in a long...
متن کاملEncapsulated and Nonencapsulated Haemophilus influenzae Strains
Protein D is a surface-exposed lipoprotein of the gram-negative bacterium Haemophilus influenzae with affinity for human immunoglobulin D myeloma protein. The gene encoding protein D (hpd) in a serotype b strain of H. influenzae was cloned. Escherichia coli carrying the hpd gene bound human myeloma immunoglobulin D. Nucleotide sequence analysis identified an 1,092-bp open reading frame that was...
متن کاملCloning and expression of Eimeria necatrix microneme5 gene in Escherichia coli
Background: Coccidiosis caused by Eimeria necatrix has the most economic impact onpoultry production. Micronemal proteins in Eimeria necatrix are thoughtto be critical ligands determining host cell specificity at the time ofinvasion. OBJECTIVES: Isolation and purification of Eimeria necatrix oocysts from Khuzestan province of Iran was performed. AcDNA encoding microneme 5 (EnMIC5...
متن کاملCloning and evaluation of gene expression and purification of gene encoding recombinant protein containing binding subunit of coli surface antigens CS1 and CS2 from Enterotoxigenic Escherichia coli
Background & Objective: Enterotoxigenic Escherichia coli (ETEC) is a major causative agent of diarrhea. Enterotoxins and the colonization factors (CFs) are major virulence factors in ETEC infections. The bacterium binds to the intestinal epithelial cell surface through colonization factors and produces enterotoxins that cause excessive fluid and electrolyte secretion in the lumen of the intesti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015